Recent Research Interests

Quantum Information Theory

Finding the trade-off relationships between key parameters of quantum communication systems. In particular, my recent interests are focusing on error exponent analysis of quantum source and channel coding.  

Refs:

  1. Cheng, Hanson, Datta, Hsieh. Duality between source coding with quantum side information and c-q channel coding. arXiv:1809.11143 (2018). 

  2. Cheng & Hsieh. On the Concavity of Auxiliary Function in Classical-Quantum Channels. IEEE Trans. Inf. Theory, 62(10), 5960 - 5965, 2016.

  3. Cheng & Hsieh. Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing. IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 1385-1403 (2018).  

Project | 01

Statistical Learning & Quantum Machine Learning

I am generally interested in classical/quantum statistical learning models; namely, to understand the generalization errors of different learning settings. I also have interest in understanding how quantum computation (and quantum entanglement) can speed up the machine learning tasks. 

Refs: 

  1. Du, Hsieh, Liu, Tao. Implementable Quantum Classifier for Nonlinear Data. arXiv:1809.06056 (2018).

  2. Cheng, Hsieh and Yeh. The Learnability of Unknown Quantum Measurements. QIC, Vol. 16, No. 7-8, 0615-0656, 2016.

Project | 02

Quantum Resource Theory & Physics Foundations

I am interested in studying physics foundations in views of resource theory, or problems where I can apply quantum information techniques. 

Refs: 

  1. Vijayan, Chitambar, Hsieh. One-shot assisted concentration of coherence. Journal of Physics A: Mathematical and Theoretical, Vol. 51, No. 41, p. 414001 (2018). [arXiv:1804.06554]

  2. ​Anshu, Hsieh, Jain. Quantifying resource in catalytic resource theory. Physical Review Letters, Accepted on 17-July-2018.  arXiv:1708.00381 (2017). 

  3. Chitambar & Hsieh. Relating the Resource Theories of Entanglement and Quantum Coherence. Phys. Rev. Lett. 117, 020402 (2016).

  4. Lee, Hsieh, Flammia and Lee. Local PT symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014).

Project | 03

Quantum Cryptography & Post-Quantum Crypto

Finding the secrecy structure in a classical probability distribution/bipartite quantum state, and its relationship to quantum entanglement: 

Refs:

  1. Chitambar, Fortescue & Hsieh. Distributions Attaining Secret Key at a Rate of the Conditional Mutual Information. Advances in Cryptology -- CRYPTO 2015, Volume 9216 of the series Lecture Notes in Computer Science pp. 443-462, 2015.

  2. Chitambar, Fortescue & Hsieh. A Classical Analog to Entanglement Reversibility. Phys. Rev. Lett. 115, 090501, 2015.

  3. Chitambar, Fortescue & Hsieh. Quantum Versus Classical Advantages in Secret Key Distillation. ArcticCrypto 2016.

Project | 04

Matrix Analysis & Matrix Concentration Inequality

These mathematical components commonly appear in my  outcomes, and development of deeper knowledge in these areas allows me to carry out these proposed new directions.  

Refs:

  1. Zhang, Gao, Hsieh, Hang, Tao. Matrix Infinitely Divisible Series: Tail Inequalities and Applications in Optimization. arXiv:1809.00781 (2018).

  2. Cheng & Hsieh. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 472, no. 2187, p. 20150563 (2016).

Project | 05

To see more or discuss possible work let's talk >>

Follow me

MAP

Room 207, Level 10, Building 11
​University of Technology Sydney

Call

T: (+61) 02-9514 4494  

Contact

min-hsiu.hsieh (at) uts.edu.au

  • Facebook Clean
  • Twitter Clean
  • White Google+ Icon