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Abstract

Contents to be covered in this lecture are

1. Quantum Channels;

• Kraus representation

• Stinespring dilation

2. Distance Measures;

• Trace distance

• Fidelity

3. State Discrimination.

• Helstrom bound

Notations

For a Hilbert space H, let

• L(H) denote the collection of linear operators acting on H,

• L(H)+ denote the set of positive semi-definite operators on H,

• D(H) denote the set of density matrices (or states), i.e., positive semi-definite operators of
unit trace.

Unless otherwise stated, we assume all Hilbert spaces to be finite-dimensional. We will denote the
dimensionality of a Hilbert space HA by dA, or simply by d if the subscript is not specified. We
denote the identity map by id, and denote the identity operator on HB by IB.

1 Quantum Channels

Recall that in the first lecture, we introduced the system evolution, which can be modelled as
a unitary operation, in a close (noiseless) environment. Here, we will introduce a more general
system evolution: a noisy quantum channel NA→B, which is a completely-positive trace-preserving
(CPTP) map, because it takes a quantum state ρA ∈ D(HA) as an input and produces another
quantum state σB ∈ D(HB) as the output.
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1. Recall that a quantum state is a positive semi-definite matrix with unit trace. Since the
channel maps a positive semi-definite matrix to another positive semi-definite matrix, it has
to be a positive map. Furthermore, this has to hold true even if the input to the quantum
channel is only part of a larger quantum system:

σBR = idR ⊗NA→B(ρAR) ∈ D(HBR). (1)

Hence, the quantum channel has to be completely positive.

2. The trace-preserving condition follows since both the input and output quantum states have
equal trace.

Exercise 1 Show that transpose is a positive map, but not a completely positive map.

Definition 2 A quantum channel N is unital if N (I) = I.

Examples

• Dephasing Channel:
N (ρ) = (1− p)ρ+ pZρZ.

• Depolarizing Channel:
N (ρ) = (1− p)ρ+ pπ,

where π is the completely mixed state.

• Pauli Channel:

N (σ) =
1∑

i,j=0

p(i, j)ZiXjσXjZi

where we denote X0 = Z0 = I.

• Measure-and-prepare channel: For a POVM {Λi} and a collection of quantum states {σi},
we can define

N (ρ) =
∑
i

σi Tr(Λiρ). (2)

This channel is also known as an entanglement-breaking channel.

Exercise 3 The set of generalized Pauli matrices {Um}m∈[d2] is defined by Ul·d+k = Ẑd(l)X̂d(k)
for k, l = 0, 1, · · · , d− 1 and

X̂d(k) =
∑
s

|s〉〈s+ k| = X̂d(1)k,

Ẑd(l) =
∑
s

ei2πsl/d|s〉〈s| = Ẑd(1)l.
(3)

The + sign denotes addition modulo d. Show that

1

d2

d2∑
m=1

UmρU
†
m = π, (4)

where π = I
d .
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1.1 Kraus Representation

Denote

|Γ〉RA =

dA∑
i=1

|i〉R ⊗ |i〉A ∈ HR ⊗HA (5)

with |HA| = |HR| = dA. Recall Choi’s theorem on completely positive maps: NA→B is completely
positive if and only if its Choi matrix

CN := (idR ⊗NA→B)(|Γ〉〈Γ|RA) ∈ L(HR ⊗HB)+ (6)

is positive. A consequence of Choi’s theorem implies that N is completely positive if and only if it
can be expressed as

N (A) =
∑
i

KiAK
†
i , (7)

where {Ki} are known as Kraus operators of N . If N is also trace preserving, then
∑

iK
†
iKi = I.

Specifically, assume that the Choi matrix has the following spectral decomposition

CN =

dAdB∑
k=1

|νk〉〈νk|, (8)

where we abuse notation slightly because {|νk〉} are not necessarily normalized. Note that

N (|i〉〈j|) = (〈i| ⊗ IB)CN (|j〉 ⊗ IB) (9)

= (〈i| ⊗ IB)

(
dAdB∑
`=1

|ν`〉〈ν`|

)
(|j〉 ⊗ IB) (10)

=

dAdB∑
`=1

(〈i| ⊗ IB)|ψ`〉〈ψ`|(|j〉 ⊗ IB). (11)

Now we can define the set of operators {K` : HA → HB} by the following relations: ∀|i〉,

K`|i〉A = (〈i| ⊗ IB)|ν`〉. (12)

Then

N (|i〉〈j|) =

dAdB∑
`=1

K`|i〉〈j|AK†` . (13)

Linearity of N yields

N (ρA) =

dAdB∑
`=1

K`ρAK
†
` . (14)
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Finally,

IR = TrB
{

(idR ⊗NA→B)(|Γ〉〈Γ|RA)
}

(15)

= TrB

{∑
`

(IR ⊗K`)(|Γ〉〈Γ|RA)(IR ⊗K†` )

}
(16)

= TrB

{∑
`

(KT
` ⊗ IA)(|Γ〉〈Γ|RA)(K∗` ⊗ I

†
A)

}
(17)

=
∑
`

KT
` K

∗
` , (18)

where |Γ〉RA in the first line is given in Eq. (5); the second line uses Eq. (13); and the third equality
uses

(IR ⊗A)|Γ〉RA = (AT ⊗ IA)|Γ〉RA. (19)

Therefore
∑

iK
†
iKi = I can be obtained by taking conjugation on Eq. (18).

Take Home

A quantum channel can be described by a corresponding Kraus operators
{Ki}.

1.2 Stinespring Dilation

For a quantum channel NA→B with the following Kraus representation

NA→B(σA) =
∑
i

KiσAK
†
i , (20)

it can be modeled by an isometry UN : A→ BE with a larger target space BE, followed by tracing
out the “environment” system E. Specifically,

UA→BEN :=
∑
i

Ki ⊗ |i〉E . (21)

Note that UN is known as the Stinespring dilation [7] of N . We will often write UN (ρ) for UN ρU
†
N .

The Stinespring dilation is commonly used when we choose to work in the purified setting, as
illustrated in Figure 1. Let |ψρ〉AR be the purification of ρA. The output of UN will become

|Ψ〉RBE = IR ⊗ UN |ψρ〉AR. (22)

It follows that
N (ρA) = TrRE |Ψ〉〈Ψ|RBE . (23)

Exercise 4 Verify that U †NUN = IA, where UN is given in Eq. (21).

Exercise 5 Verify that

TrE UN (σA) =
∑
i

KiσAK
†
i .
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|ψρ〉AR
|Ψ〉RBE

UN

output

Figure 1: Purified picture of a quantum channel.

Further reading

A conditional quantum encoder EMA→B, or conditional quantum channel , is a collection
{
EA→Bm

}
m

of CPTP maps. Its inputs are a classical system M and a quantum system A and its output is a
quantum system B. A classical-quantum state ρMA, where

ρMA ≡
∑
m

p(m)|m〉〈m|M ⊗ ρAm,

can act as an input to the conditional quantum encoder EMA→B. The action of the conditional
quantum encoder EMA→B on the classical-quantum state ρMA is as follows:

EMA→B(ρMA
)

= TrM

{∑
m

p(m)|m〉〈m|M ⊗ EA→Bm

(
ρAm
)}
.

It is actually possible to write any quantum channel as a conditional quantum encoder when its
input is a classical-quantum state. In this article, a conditional quantum encoder functions as the
sender Alice’s encoder of classical and quantum information.

A quantum instrument DA→BM is a CPTP map whose input is a quantum system A and
whose outputs are a quantum system B and a classical system M . A collection

{
DA→Bm

}
m of

completely-positive trace-reducing maps specifies the instrument DA→BM . The action of the in-
strument DA→BM on an arbitrary input state ρ is as follows:

DA→BM
(
ρA
)

=
∑
m

DA→Bm

(
ρA
)
⊗ |m〉〈m|M . (24)

Tracing out the classical register M gives the induced quantum operation DA→B where

DA→B
(
ρA
)
≡
∑
m

DA→Bm

(
ρA
)
.

This sum map is trace preserving:

Tr

{∑
m

DA→Bm

(
ρA
)}

= 1.

We can think of the following quantity

p(m) ≡ Tr
{
DA→Bm

(
ρA
)}
,

as a probability p(m) of receiving the classical message m. In this article, a quantum instrument
functions as Bob’s decoder of classical and quantum information.
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2 Distance Measures

2.1 Matrix Norm

We will introduce a few useful matrix norms in this section. First of all, every norm ‖ · ‖ must
satisfy the following conditions.

• ‖A‖ ≥ 0 with equality if and only if A = 0.

• ‖αA‖ = |α|‖A‖ for any α ∈ C.

• Triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖.

Definition 6 (Schatten norm) For p ∈ [1,∞), the Shatten p-norm of a matrix A ∈ Cm×n is
defined as

‖A‖p := Tr(|A|p)
1
p (25)

where |A| :=
√
A†A. We extend p→∞ as follows

‖A‖∞ := max{‖Ax‖ : ∀x ∈ Cn, ‖x‖ = 1}. (26)

Properties of Schatten p-norms are summarized below

1. The Schatten norms are unitarily invariant: for any unitary operators U and V

‖UAV ‖p = ‖A‖p (27)

for any p ∈ [1,∞].

2. The Schatten norms satisfy Hölder’s inequality: for A ∈ Cm×n and B ∈ Cn×`, it holds that

‖AB‖1 ≤ ‖A‖p‖B‖q, (28)

where p, q ≥ 1 and 1
p + 1

q = 1.

3. Sub-multiplicativity: for A ∈ Cm×n and B ∈ Cn×`, it holds that

‖AB‖p ≤ ‖A‖p‖B‖p. (29)

4. Monotonicity: for 1 ≤ p ≤ q ≤ ∞, it holds that

‖A‖1 ≥ ‖A‖p ≥ ‖A‖q ≥ ‖A‖∞. (30)

Exercise 7 Denote by σi(A) the i-th (non-zero) singular value of A. Show that

‖A‖p =

(∑
i

(σi(A))p

)
1
p . (31)

There are important special cases of Schatten p-norm. Specifically, the Schatten 1-norm is
commonly known as the trace norm, and will lead to the definition of trace distance in Sec. 2.2.
The Schatten 2-norm is also known as the Frobenius norm whose explicit form is given below.
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Definition 8 (Frobenuis norm) The Frobenius norm (or the Hilbert-Schmidt norm) of a matrix
A ∈ Cm×n is defined as

‖A‖2 ≡ ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|Ai,j |2. (32)

Finally, the Schatten ∞-norm is also called the operator norm or the spectral norm whose
definition is given in Eq. (26).

2.2 Trace Distance and Fidelity

We will introduce two commonly used distance measures in quantum information science; namely
the trace distance and fidelity.

Definition 9 (Trace Distance) The trace distance between two operators A and B is given by

‖A−B‖1 := Tr |A−B|.

Exercise 10
‖σ − ρ‖1 = max

−I≤Λ≤I
Tr[Λ(σ − ρ)]. (33)

Denote T (ρ, σ) ≡ ‖ρ − σ‖1. The trace distance of two density operators is an extension of total
variation distance of probability measures:

T (P,Q) =
1

2

∑
x

|p(x)− q(x)|, (34)

where P and Q are probability distributions with pdf p(x) and q(x), respectively.
Properties of the trace distance include

• T (ρ, σ) = 0 if and only if ρ = σ.

• Invariant under unitary operation: T (UρU †, UσU †) = T (ρ, σ)

• Contraction: T (N (ρ),N (σ)) ≤ T (ρ, σ), where N is any trace-preserving and completely
positive map.

• Convexity: T (
∑

i piρi, σ) ≤
∑

i piT (ρi, σ).

Definition 11 (Fidelity) For ρ, σ ∈ D(H), their fidelity is

F (ρ, σ) := Tr
√√

ρσ
√
ρ.

Note that fidelity is not a metric on D(H). Fidelity is a quantum generization of classical Bhat-
tacharyya distance:

F (P,Q) =
∑
x

√
p(x)q(x) (35)

where P and Q are probability distributions with pdf p(x) and q(x), respectively.
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Exercise 12 Shot that, for ρ, σ ∈ D(H),

F (ρ, σ) = min
Λi

(∑
i

√
Tr[ρΛi] Tr[σΛi]

)
(36)

where Λ = {Λi} is a POVM [4].

Exercise 13 Show that
F (ρ, σ) = max

ψρ,ψσ
|〈ψρ, ψσ〉|,

where the maximum is taken over all purifications ψρ, ψσ of ρ and σ, respectively. Hint: Uhlmann’s
theorem [9].

Properties of the fidelity include

• Symmetry: F (ρ, σ) = T (σ, ρ).

• 0 ≤ F (ρ, σ) ≤ 1.

• F (UρU †, UσU †) = F (ρ, σ).

• F (|ψρ〉, |ψσ〉) = |〈ψρ|ψσ〉|.

• F (N (ρ),N (σ)) ≥ F (ρ, σ), where N is any trace-preserving and completely positive map.

Lemma 14
1− F (ρ, σ) ≤ ‖ρ− σ‖1 ≤

√
1− F 2(ρ, σ). (37)

The distance ds(ρ, σ) :=
√

1− F 2(ρ, σ) on density operators was introduced in [5] under the name
sine distance. The sine distance was extended to a metric on subnormalized states in a different
way under the name purified distance in [8].

Exercise 15 (Advanced) We can extend the definition of sine distance to that on the set of
positive semidefinite operators [3]. Define

dop(ρ, σ) := min
ψρ,ψσ

1

2
‖|ψρ〉〈ψρ| − |ψσ〉〈ψσ|‖1 (38)

where ψρ, ψσ are purifications of ρ, σ ∈ L(H)+. We will call dop the distance of optimal purifica-
tions.

Show the following:

• dop is a metric on L(H)+.

• dop coincides with ds for density operators.

•
dop(ρ, σ)2

Tr ρ+ Trσ
≤ ‖ρ− σ‖1 ≤ dop(ρ, σ).
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3 State Discrimination

The (one-copy) quantum state discrimination problem involves the task of correctly identifying a
quantum state that is randomly sampled from an ensemble E = {ρi, pi}ni=1, where ρi ∈ D(H) and
pi is the probability of obtaining ρi. The “which state” classical information is extracted from the
sampled state using a positive operator-valued measure (POVM), which is a collection of positive
semidefinite operators Π = {Πi}ni=1 acting on D(H) such that

∑n
i=1 Πi = Id. The total identification

success probability of the POVM Π is

Π(E) :=
n∑
i=1

pi Tr[Πiρi]. (39)

Define the optimal success probability

Psucc(E) = max
Π

Π(E), (40)

and the minimum error probability is given by

Perr(E) = 1− Psucc(E). (41)

Here the minimization is taken over all n-outcome POVMs, and a minimum can indeed be obtained
since the set of POVMs is compact.

For the case of n = 2, we have the following famous result.

Theorem 16 (Holevo-Helstrom) The minimum error probability to discriminate a given en-
semble E = {ρi, pi}2i=1 is

Perr(E) =
1

2
− 1

2
‖p1ρ1 − p2ρ2‖1. (42)

This result gives the trace distance an operational meaning.
Proof. The success probability of a POVM Π = {Π1,Π2} on the ensemble E is

Π(E) = p1 Tr Π1ρ1 + p2 Tr Π2ρ2 (43)

=

(
1

2
Tr Π1p1ρ1 +

1

2
Tr Π1p1ρ1

)
+

(
1

2
Tr Π2p2ρ2 +

1

2
Tr Π2p2ρ2

)
(44)

=

(
1

2
Tr Π1p1ρ1 +

1

2
Tr (I −Π2)p1ρ1

)
+

(
1

2
Tr Π1p2ρ2 +

1

2
Tr (I −Π1)p2ρ2

)
(45)

=
1

2
+

1

2
Tr Π1(p1ρ1 − p2ρ2)− 1

2
Tr Π2(p1ρ1 − p2ρ2) (46)

=
1

2
+

1

2
Tr(Π1 −Π2)(p1ρ1 − p2ρ2) (47)

≤ 1

2
+

1

2
‖p1ρ1 − p2ρ2‖1, (48)

where the inequality uses Eq. (33). In the following, we can explicitly construct Π such that it will
saturate the bound in Eq. (48). Let A = p1ρ1 − p2ρ2, and assume its spectral decomposition to be

A =
∑
i

λi|νi〉〈νi|.
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Define two projectors

P+ =
∑
i:λi≥0

|νi〉〈νi| (49)

P− =
∑
i:λi<0

|νi〉〈νi|, (50)

and notice that
‖A‖1 =

∑
i

|λi| = TrP+A− TrP−A. (51)

Using P+ ≡ Π1 and P1 ≡ Π2 completes the proof.
The minimum error probability for a general ensemble has a closed form [6] that relates to the

min entropy defined on the ensemble.

Exercise 17 (Advanced) Show that 1−Perr(E) = 2−Hmin(X|B)ρ, where ρEXB =
∑n

x=1 px|x〉〈x|X⊗
ρBx ,

Hmin(A|B)ρ = − inf
σB
Dmax(ρAB||IA ⊗ σB) (52)

and Dmax(τ‖τ ′) = inf{λ ∈ R : τ ≤ 2λτ ′}.

Further reading

A variant of the above state discrimination is as follows. An extra outcome Π0 is appended to the
set of POVMs, and an additional constraint must be satisfied that Tr[Πiρj ] = 0 whenever i 6= j.
Under this condition, no error will ever be made when guessing the state; however, the outcome
“0” represents an inconclusive outcome and no guess is made on the state’s identity. The minimum
inconclusive probability is thus given by the following

Pinc(E) = min
Π

n∑
i=1

Tr[Π0ρi]

s.t. Tr[Πiρj ] = 0 i 6= j > 0. (53)

This time, the minimization is taken over all (n + 1)-outcome POVMs. Not all ensembles will
allow for a feasible solution, and unambiguous discrimination is possible if and only if the states
are linearly independent [2].

State discrimination is also used to demonstrate the phenomenon of nonlocality without entan-
glement [1].
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