41076: Methods in Quantum Computing

'Quantum Information' Module

Min-Hsiu Hsieh

Centre for Quantum Software & Information, Faculty of Engineering and Information Technology, University of Technology Sydney

Abstract

Contents to be covered in this lecture are

- 1. Quantum Channels;
 - Kraus representation
 - Stinespring dilation
- 2. Distance Measures;
 - Trace distance
 - Fidelity
- 3. State Discrimination.
 - Helstrom bound

Notations

For a Hilbert space \mathcal{H} , let

- $\mathcal{L}(\mathcal{H})$ denote the collection of linear operators acting on \mathcal{H} ,
- $\mathcal{L}(\mathcal{H})_+$ denote the set of positive semi-definite operators on \mathcal{H} ,
- $\mathcal{D}(\mathcal{H})$ denote the set of density matrices (or states), i.e., positive semi-definite operators of unit trace.

Unless otherwise stated, we assume all Hilbert spaces to be finite-dimensional. We will denote the dimensionality of a Hilbert space \mathcal{H}_A by d_A , or simply by d if the subscript is not specified. We denote the identity map by id, and denote the identity operator on \mathcal{H}_B by I_B .

1 Quantum Channels

Recall that in the first lecture, we introduced the system evolution, which can be modelled as a unitary operation, in a close (noiseless) environment. Here, we will introduce a more general system evolution: a noisy quantum channel $\mathcal{N}^{A\to B}$, which is a completely-positive trace-preserving (CPTP) map, because it takes a quantum state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ as an input and produces another quantum state $\sigma_B \in \mathcal{D}(\mathcal{H}_B)$ as the output. 1. Recall that a quantum state is a positive semi-definite matrix with unit trace. Since the channel maps a positive semi-definite matrix to another positive semi-definite matrix, it has to be a positive map. Furthermore, this has to hold true even if the input to the quantum channel is only part of a larger quantum system:

$$\sigma_{BR} = \mathrm{id}_R \otimes \mathcal{N}^{A \to B}(\rho_{AR}) \in \mathcal{D}(\mathcal{H}_{BR}).$$
(1)

Hence, the quantum channel has to be completely positive.

2. The trace-preserving condition follows since both the input and output quantum states have equal trace.

Exercise 1 Show that transpose is a positive map, but not a completely positive map.

Definition 2 A quantum channel \mathcal{N} is unital if $\mathcal{N}(I) = I$.

Examples

• Dephasing Channel:

$$\mathcal{N}(\rho) = (1-p)\rho + pZ\rho Z.$$

• Depolarizing Channel:

$$\mathcal{N}(\rho) = (1-p)\rho + p\pi,$$

where π is the completely mixed state.

• Pauli Channel:

$$\mathcal{N}(\sigma) = \sum_{i,j=0}^{1} p(i,j) Z^{i} X^{j} \sigma X^{j} Z^{i}$$

where we denote $X^0 = Z^0 = I$.

• Measure-and-prepare channel: For a POVM $\{\Lambda_i\}$ and a collection of quantum states $\{\sigma_i\}$, we can define

$$\mathcal{N}(\rho) = \sum_{i} \sigma_{i} \operatorname{Tr}(\Lambda_{i}\rho).$$
⁽²⁾

This channel is also known as an *entanglement-breaking* channel.

Exercise 3 The set of generalized Pauli matrices $\{U_m\}_{m \in [d^2]}$ is defined by $U_{l \cdot d+k} = \hat{Z}_d(l)\hat{X}_d(k)$ for $k, l = 0, 1, \dots, d-1$ and

$$\hat{X}_d(k) = \sum_s |s\rangle\langle s+k| = \hat{X}_d(1)^k,$$

$$\hat{Z}_d(l) = \sum_s e^{i2\pi sl/d} |s\rangle\langle s| = \hat{Z}_d(1)^l.$$
(3)

The + sign denotes addition modulo d. Show that

$$\frac{1}{d^2} \sum_{m=1}^{d^2} U_m \rho U_m^{\dagger} = \pi,$$
(4)

where $\pi = \frac{I}{d}$.

1.1 Kraus Representation

Denote

$$|\Gamma\rangle_{RA} = \sum_{i=1}^{d_A} |i\rangle_R \otimes |i\rangle_A \in \mathcal{H}_R \otimes \mathcal{H}_A \tag{5}$$

with $|\mathcal{H}_A| = |\mathcal{H}_R| = d_A$. Recall Choi's theorem on completely positive maps: $\mathcal{N}^{A \to B}$ is completely positive if and only if its Choi matrix

$$C_{\mathcal{N}} := (\mathrm{id}_R \otimes \mathcal{N}^{A \to B})(|\Gamma\rangle \langle \Gamma|_{RA}) \in \mathcal{L}(\mathcal{H}_R \otimes \mathcal{H}_B)_+$$
(6)

is positive. A consequence of Choi's theorem implies that \mathcal{N} is completely positive if and only if it can be expressed as

$$\mathcal{N}(A) = \sum_{i} K_{i} A K_{i}^{\dagger}, \tag{7}$$

where $\{K_i\}$ are known as Kraus operators of \mathcal{N} . If \mathcal{N} is also trace preserving, then $\sum_i K_i^{\dagger} K_i = I$. Specifically, assume that the Choi matrix has the following spectral decomposition

$$C_{\mathcal{N}} = \sum_{k=1}^{d_A d_B} |\nu_k\rangle \langle \nu_k|,\tag{8}$$

where we abuse notation slightly because $\{|\nu_k\rangle\}$ are not necessarily normalized. Note that

$$\mathcal{N}(|i\rangle\langle j|) = (\langle i|\otimes I_B)C_{\mathcal{N}}(|j\rangle\otimes I_B) \tag{9}$$

$$= (\langle i| \otimes I_B) \left(\sum_{\ell=1}^{a_A a_B} |\nu_\ell\rangle \langle \nu_\ell| \right) (|j\rangle \otimes I_B)$$

$$(10)$$

$$= \sum_{\ell=1}^{d_A d_B} (\langle i | \otimes I_B \rangle | \psi_\ell \rangle \langle \psi_\ell | (|j\rangle \otimes I_B).$$
(11)

Now we can define the set of operators $\{K_{\ell}: \mathcal{H}_A \to \mathcal{H}_B\}$ by the following relations: $\forall |i\rangle$,

$$K_{\ell}|i\rangle_{A} = (\langle i|\otimes I_{B})|\nu_{\ell}\rangle.$$
(12)

Then

$$\mathcal{N}(|i\rangle\langle j|) = \sum_{\ell=1}^{d_A d_B} K_\ell |i\rangle\langle j|_A K_\ell^{\dagger}.$$
(13)

Linearity of \mathcal{N} yields

$$\mathcal{N}(\rho_A) = \sum_{\ell=1}^{d_A d_B} K_\ell \rho_A K_\ell^{\dagger}.$$
(14)

Finally,

$$I_R = \operatorname{Tr}_B\left\{ (\operatorname{id}_R \otimes \mathcal{N}^{A \to B})(|\Gamma\rangle \langle \Gamma|_{RA}) \right\}$$
(15)

$$= \operatorname{Tr}_{B}\left\{\sum_{\ell} (I_{R} \otimes K_{\ell})(|\Gamma\rangle\langle\Gamma|_{RA})(I_{R} \otimes K_{\ell}^{\dagger})\right\}$$
(16)

$$= \operatorname{Tr}_{B}\left\{\sum_{\ell} (K_{\ell}^{T} \otimes I_{A})(|\Gamma\rangle\langle\Gamma|_{RA})(K_{\ell}^{*} \otimes I_{A}^{\dagger})\right\}$$
(17)

$$= \sum_{\ell} K_{\ell}^{T} K_{\ell}^{*}, \tag{18}$$

where $|\Gamma\rangle_{RA}$ in the first line is given in Eq. (5); the second line uses Eq. (13); and the third equality uses

$$(I_R \otimes A) | \Gamma \rangle_{RA} = (A^T \otimes I_A) | \Gamma \rangle_{RA}.$$
⁽¹⁹⁾

Therefore $\sum_{i} K_{i}^{\dagger} K_{i} = I$ can be obtained by taking conjugation on Eq. (18).

Take Home

A quantum channel can be described by a corresponding Kraus operators $\{K_i\}$.

1.2 Stinespring Dilation

For a quantum channel $\mathcal{N}^{A \to B}$ with the following Kraus representation

$$\mathcal{N}^{A \to B}(\sigma_A) = \sum_i K_i \sigma_A K_i^{\dagger}, \qquad (20)$$

it can be modeled by an isometry $U_{\mathcal{N}}: A \to BE$ with a larger target space BE, followed by tracing out the "environment" system E. Specifically,

$$U_{\mathcal{N}}^{A \to BE} := \sum_{i} K_{i} \otimes |i\rangle_{E}.$$
(21)

Note that $U_{\mathcal{N}}$ is known as the Stinespring dilation [7] of \mathcal{N} . We will often write $U_{\mathcal{N}}(\rho)$ for $U_{\mathcal{N}} \rho U_{\mathcal{N}}^{\dagger}$. The Stinespring dilation is commonly used when we choose to work in the purified setting, as illustrated in Figure 1. Let $|\psi^{\rho}\rangle_{AR}$ be the purification of ρ_A . The output of $U_{\mathcal{N}}$ will become

$$|\Psi\rangle_{RBE} = I_R \otimes U_N |\psi^{\rho}\rangle_{AR}.$$
(22)

It follows that

$$\mathcal{N}(\rho_A) = \mathrm{Tr}_{RE} |\Psi\rangle \langle \Psi|_{RBE}.$$
(23)

Exercise 4 Verify that $U_{\mathcal{N}}^{\dagger}U_{\mathcal{N}} = I_A$, where $U_{\mathcal{N}}$ is given in Eq. (21).

Exercise 5 Verify that

$$\operatorname{Tr}_E U_{\mathcal{N}}(\sigma_A) = \sum_i K_i \sigma_A K_i^{\dagger}.$$

Figure 1: Purified picture of a quantum channel.

Further reading

A conditional quantum encoder $\mathcal{E}^{MA \to B}$, or conditional quantum channel, is a collection $\{\mathcal{E}_m^{A \to B}\}_m$ of CPTP maps. Its inputs are a classical system M and a quantum system A and its output is a quantum system B. A classical-quantum state ρ^{MA} , where

$$p^{MA} \equiv \sum_{m} p(m) |m\rangle \langle m|^M \otimes \rho_m^A$$

can act as an input to the conditional quantum encoder $\mathcal{E}^{MA \to B}$. The action of the conditional quantum encoder $\mathcal{E}^{MA \to B}$ on the classical-quantum state ρ^{MA} is as follows:

$$\mathcal{E}^{MA \to B}(\rho^{MA}) = \operatorname{Tr}_{M} \left\{ \sum_{m} p(m) |m\rangle \langle m|^{M} \otimes \mathcal{E}_{m}^{A \to B}(\rho_{m}^{A}) \right\}.$$

It is actually possible to write *any* quantum channel as a conditional quantum encoder when its input is a classical-quantum state. In this article, a conditional quantum encoder functions as the sender Alice's encoder of classical and quantum information.

A quantum instrument $\mathcal{D}^{A\to BM}$ is a CPTP map whose input is a quantum system A and whose outputs are a quantum system B and a classical system M. A collection $\{\mathcal{D}_m^{A\to B}\}_m$ of completely-positive trace-reducing maps specifies the instrument $\mathcal{D}^{A\to BM}$. The action of the instrument $\mathcal{D}^{A\to BM}$ on an arbitrary input state ρ is as follows:

$$\mathcal{D}^{A \to BM}(\rho^A) = \sum_m \mathcal{D}_m^{A \to B}(\rho^A) \otimes |m\rangle \langle m|^M.$$
(24)

Tracing out the classical register M gives the induced quantum operation $\mathcal{D}^{A\to B}$ where

$$\mathcal{D}^{A \to B}(\rho^A) \equiv \sum_m \mathcal{D}_m^{A \to B}(\rho^A).$$

This sum map is trace preserving:

$$\operatorname{Tr}\left\{\sum_{m} \mathcal{D}_{m}^{A \to B}(\rho^{A})\right\} = 1.$$

We can think of the following quantity

$$p(m) \equiv \operatorname{Tr} \{ \mathcal{D}_m^{A \to B}(\rho^A) \},\$$

as a probability p(m) of receiving the classical message m. In this article, a quantum instrument functions as Bob's decoder of classical and quantum information.

2 Distance Measures

2.1 Matrix Norm

We will introduce a few useful matrix norms in this section. First of all, every norm $\|\cdot\|$ must satisfy the following conditions.

- $||A|| \ge 0$ with equality if and only if A = 0.
- $\|\alpha A\| = |\alpha| \|A\|$ for any $\alpha \in \mathbb{C}$.
- Triangle inequality: $||A + B|| \le ||A|| + ||B||$.

Definition 6 (Schatten norm) For $p \in [1, \infty)$, the Shatten p-norm of a matrix $A \in \mathbb{C}^{m \times n}$ is defined as

$$||A||_p := \operatorname{Tr}(|A|^p)^{\frac{1}{p}}$$
(25)

where $|A| := \sqrt{A^{\dagger}A}$. We extend $p \to \infty$ as follows

$$||A||_{\infty} := \max\{||A\boldsymbol{x}|| : \forall \boldsymbol{x} \in \mathbb{C}^n, ||\boldsymbol{x}|| = 1\}.$$
(26)

Properties of Schatten *p*-norms are summarized below

1. The Schatten norms are unitarily invariant: for any unitary operators U and V

$$||UAV||_p = ||A||_p \tag{27}$$

for any $p \in [1, \infty]$.

2. The Schatten norms satisfy Hölder's inequality: for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times \ell}$, it holds that

$$\|AB\|_{1} \le \|A\|_{p} \|B\|_{q},\tag{28}$$

where $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} = 1$.

3. Sub-multiplicativity: for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times \ell}$, it holds that

$$||AB||_{p} \le ||A||_{p} ||B||_{p}.$$
⁽²⁹⁾

4. Monotonicity: for $1 \le p \le q \le \infty$, it holds that

$$||A||_1 \ge ||A||_p \ge ||A||_q \ge ||A||_{\infty}.$$
(30)

Exercise 7 Denote by $\sigma_i(A)$ the *i*-th (non-zero) singular value of A. Show that

$$||A||_{p} = \left(\sum_{i} (\sigma_{i}(A))^{p}\right)^{\frac{1}{p}}.$$
(31)

There are important special cases of Schatten *p*-norm. Specifically, the Schatten 1-norm is commonly known as the *trace norm*, and will lead to the definition of trace distance in Sec. 2.2. The Schatten 2-norm is also known as the *Frobenius norm* whose explicit form is given below.

Definition 8 (Frobenuis norm) The Frobenius norm (or the Hilbert-Schmidt norm) of a matrix $A \in \mathbb{C}^{m \times n}$ is defined as

$$||A||_2 \equiv ||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |A_{i,j}|^2}.$$
(32)

Finally, the Schatten ∞ -norm is also called the *operator norm* or the *spectral norm* whose definition is given in Eq. (26).

2.2 Trace Distance and Fidelity

We will introduce two commonly used distance measures in quantum information science; namely the trace distance and fidelity.

Definition 9 (Trace Distance) The trace distance between two operators A and B is given by

$$||A - B||_1 := \text{Tr} |A - B|$$

Exercise 10

$$\|\sigma - \rho\|_1 = \max_{-I \le \Lambda \le I} \operatorname{Tr}[\Lambda(\sigma - \rho)].$$
(33)

Denote $T(\rho, \sigma) \equiv \|\rho - \sigma\|_1$. The trace distance of two density operators is an extension of total variation distance of probability measures:

$$T(P,Q) = \frac{1}{2} \sum_{x} |p(x) - q(x)|, \qquad (34)$$

where P and Q are probability distributions with pdf p(x) and q(x), respectively.

Properties of the trace distance include

- $T(\rho, \sigma) = 0$ if and only if $\rho = \sigma$.
- Invariant under unitary operation: $T(U\rho U^{\dagger}, U\sigma U^{\dagger}) = T(\rho, \sigma)$
- Contraction: $T(\mathcal{N}(\rho), \mathcal{N}(\sigma)) \leq T(\rho, \sigma)$, where \mathcal{N} is any trace-preserving and completely positive map.
- Convexity: $T(\sum_i p_i \rho_i, \sigma) \leq \sum_i p_i T(\rho_i, \sigma).$

Definition 11 (Fidelity) For $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, their fidelity is

$$F(\rho,\sigma) := \operatorname{Tr} \sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}.$$

Note that fidelity is not a metric on $\mathcal{D}(\mathcal{H})$. Fidelity is a quantum generization of classical Bhat-tacharyya distance:

$$F(P,Q) = \sum_{x} \sqrt{p(x)q(x)}$$
(35)

where P and Q are probability distributions with pdf p(x) and q(x), respectively.

Exercise 12 Shot that, for $\rho, \sigma \in \mathcal{D}(\mathcal{H})$,

$$F(\rho, \sigma) = \min_{\Lambda_i} \left(\sum_i \sqrt{\operatorname{Tr}[\rho \Lambda_i] \operatorname{Tr}[\sigma \Lambda_i]} \right)$$
(36)

where $\Lambda = \{\Lambda_i\}$ is a POVM [4].

Exercise 13 Show that

$$F(\rho,\sigma) = \max_{\psi_{\rho},\psi_{\sigma}} |\langle \psi_{\rho},\psi_{\sigma} \rangle|,$$

where the maximum is taken over all purifications $\psi_{\rho}, \psi_{\sigma}$ of ρ and σ , respectively. Hint: Uhlmann's theorem [9].

Properties of the fidelity include

- Symmetry: $F(\rho, \sigma) = T(\sigma, \rho)$.
- $0 \leq F(\rho, \sigma) \leq 1$.
- $F(U\rho U^{\dagger}, U\sigma U^{\dagger}) = F(\rho, \sigma).$
- $F(|\psi_{\rho}\rangle, |\psi_{\sigma}\rangle) = |\langle\psi_{\rho}|\psi_{\sigma}\rangle|.$
- $F(\mathcal{N}(\rho), \mathcal{N}(\sigma)) \ge F(\rho, \sigma)$, where \mathcal{N} is any trace-preserving and completely positive map.

Lemma 14

$$1 - F(\rho, \sigma) \le \|\rho - \sigma\|_1 \le \sqrt{1 - F^2(\rho, \sigma)}.$$
(37)

The distance $d_s(\rho, \sigma) := \sqrt{1 - F^2(\rho, \sigma)}$ on density operators was introduced in [5] under the name sine distance. The sine distance was extended to a metric on subnormalized states in a different way under the name purified distance in [8].

Exercise 15 (Advanced) We can extend the definition of sine distance to that on the set of positive semidefinite operators [3]. Define

$$d_{op}(\rho,\sigma) := \min_{\psi_{\rho},\psi_{\sigma}} \frac{1}{2} \||\psi_{\rho}\rangle\langle\psi_{\rho}| - |\psi_{\sigma}\rangle\langle\psi_{\sigma}|\|_{1}$$
(38)

where $\psi_{\rho}, \psi_{\sigma}$ are purifications of $\rho, \sigma \in \mathcal{L}(\mathcal{H})_+$. We will call d_{op} the distance of optimal purifications.

Show the following:

- d_{op} is a metric on $\mathcal{L}(\mathcal{H})_+$.
- d_{op} coincides with d_s for density operators.
- ٠

$$\frac{d_{op}(\rho,\sigma)^2}{\operatorname{Tr}\rho + \operatorname{Tr}\sigma} \le \|\rho - \sigma\|_1 \le d_{op}(\rho,\sigma).$$

3 State Discrimination

The (one-copy) quantum state discrimination problem involves the task of correctly identifying a quantum state that is randomly sampled from an ensemble $\mathcal{E} = \{\rho_i, p_i\}_{i=1}^n$, where $\rho_i \in \mathcal{D}(\mathcal{H})$ and p_i is the probability of obtaining ρ_i . The "which state" classical information is extracted from the sampled state using a positive operator-valued measure (POVM), which is a collection of positive semidefinite operators $\Pi = {\Pi_i}_{i=1}^n$ acting on $\mathcal{D}(\mathcal{H})$ such that $\sum_{i=1}^n \Pi_i = \mathbb{I}_d$. The total identification success probability of the POVM Π is

$$\Pi(\mathcal{E}) := \sum_{i=1}^{n} p_i \operatorname{Tr}[\Pi_i \rho_i].$$
(39)

Define the optimal success probability

$$P_{succ}(\mathcal{E}) = \max_{\Pi} \Pi(\mathcal{E}), \tag{40}$$

and the *minimum error probability* is given by

$$P_{err}(\mathcal{E}) = 1 - P_{succ}(\mathcal{E}). \tag{41}$$

Here the minimization is taken over all *n*-outcome POVMs, and a minimum can indeed be obtained since the set of POVMs is compact.

For the case of n = 2, we have the following famous result.

Theorem 16 (Holevo-Helstrom) The minimum error probability to discriminate a given ensemble $\mathcal{E} = \{\rho_i, p_i\}_{i=1}^2$ is

$$P_{err}(\mathcal{E}) = \frac{1}{2} - \frac{1}{2} \|p_1 \rho_1 - p_2 \rho_2\|_1.$$
(42)

This result gives the trace distance an *operational* meaning. **Proof.** The success probability of a POVM $\Pi = {\Pi_1, \Pi_2}$ on the ensemble \mathcal{E} is

$$\Pi(\mathcal{E}) = p_1 \operatorname{Tr} \Pi_1 \rho_1 + p_2 \operatorname{Tr} \Pi_2 \rho_2 \tag{43}$$

$$= \left(\frac{1}{2}\operatorname{Tr}\Pi_{1}p_{1}\rho_{1} + \frac{1}{2}\operatorname{Tr}\Pi_{1}p_{1}\rho_{1}\right) + \left(\frac{1}{2}\operatorname{Tr}\Pi_{2}p_{2}\rho_{2} + \frac{1}{2}\operatorname{Tr}\Pi_{2}p_{2}\rho_{2}\right)$$
(44)

$$= \left(\frac{1}{2}\operatorname{Tr}\Pi_{1}p_{1}\rho_{1} + \frac{1}{2}\operatorname{Tr}(I - \Pi_{2})p_{1}\rho_{1}\right) + \left(\frac{1}{2}\operatorname{Tr}\Pi_{1}p_{2}\rho_{2} + \frac{1}{2}\operatorname{Tr}(I - \Pi_{1})p_{2}\rho_{2}\right)$$
(45)

$$= \frac{1}{2} + \frac{1}{2} \operatorname{Tr} \Pi_1(p_1 \rho_1 - p_2 \rho_2) - \frac{1}{2} \operatorname{Tr} \Pi_2(p_1 \rho_1 - p_2 \rho_2)$$
(46)

$$= \frac{1}{2} + \frac{1}{2} \operatorname{Tr}(\Pi_1 - \Pi_2)(p_1 \rho_1 - p_2 \rho_2)$$
(47)

$$\leq \frac{1}{2} + \frac{1}{2} \|p_1 \rho_1 - p_2 \rho_2\|_1, \tag{48}$$

where the inequality uses Eq. (33). In the following, we can explicitly construct Π such that it will saturate the bound in Eq. (48). Let $A = p_1 \rho_1 - p_2 \rho_2$, and assume its spectral decomposition to be

$$A = \sum_{i} \lambda_i |\nu_i\rangle \langle \nu_i|.$$

Define two projectors

$$P_{+} = \sum_{i:\lambda \ge 0} |\nu_{i}\rangle\langle\nu_{i}| \tag{49}$$

$$P_{-} = \sum_{i:\lambda_i < 0} |\nu_i\rangle \langle \nu_i|, \qquad (50)$$

and notice that

$$|A||_{1} = \sum_{i} |\lambda_{i}| = \operatorname{Tr} P_{+}A - \operatorname{Tr} P_{-}A.$$
(51)

Using $P_+ \equiv \Pi_1$ and $P_1 \equiv \Pi_2$ completes the proof.

The minimum error probability for a general ensemble has a closed form [6] that relates to the min entropy defined on the ensemble.

Exercise 17 (Advanced) Show that $1 - P_{err}(\mathcal{E}) = 2^{-H_{\min}(X|B)_{\rho}}$, where $\rho_{XB}^{\mathcal{E}} = \sum_{x=1}^{n} p_x |x\rangle \langle x|^X \otimes \rho_x^B$,

$$H_{\min}(A|B)_{\rho} = -\inf_{\sigma_B} D_{\max}(\rho_{AB}||I_A \otimes \sigma_B)$$
(52)

and $D_{\max}(\tau \| \tau') = \inf \{ \lambda \in \mathbb{R} : \tau \le 2^{\lambda} \tau' \}.$

Further reading

A variant of the above state discrimination is as follows. An extra outcome Π_0 is appended to the set of POVMs, and an additional constraint must be satisfied that $\text{Tr}[\Pi_i \rho_j] = 0$ whenever $i \neq j$. Under this condition, no error will ever be made when guessing the state; however, the outcome "0" represents an inconclusive outcome and no guess is made on the state's identity. The *minimum* inconclusive probability is thus given by the following

$$P_{inc}(\mathcal{E}) = \min_{\Pi} \sum_{i=1}^{n} \operatorname{Tr}[\Pi_{0}\rho_{i}]$$

s.t.
$$\operatorname{Tr}[\Pi_{i}\rho_{j}] = 0 \quad i \neq j > 0.$$
 (53)

This time, the minimization is taken over all (n + 1)-outcome POVMs. Not all ensembles will allow for a feasible solution, and unambiguous discrimination is possible if and only if the states are linearly independent [2].

State discrimination is also used to demonstrate the phenomenon of *nonlocality without entan*glement [1].

References

- Charles H. Bennett, David P. DiVincenzo, Christopher A. Fuchs, Tal Mor, Eric Rains, Peter W. Shor, John A. Smolin, and William K. Wootters, *Quantum nonlocality without entanglement*, Phys. Rev. A 59 (1999Feb), no. 2, 1070–1091.
- [2] Anthony Chefles, Unambiguous Discrimination between Sets of Linearly Independent Quantum states, Phys. Lett. A 239 (1998), 339.
- [3] Nilanjana Datta, Milan Mosonyi, Min-Hsiu Hsieh, and Fernando G.S.L. Brandao, A smooth entropy approach to quantum hypothesis testing and the classical capacity of quantum channels, IEEE Transactions on Information Theory 59 (2013Dec), no. 12, 8014–8026.

- [4] Christopher A. Fuchs and Carlton M. Caves, Ensemble-dependent bounds for accessible information in quantum mechanics, Phys. Rev. Lett. 73 (1994Dec), 3047–3050.
- [5] Alexei Gilchrist, Nathan K. Langford, and Michael A. Nielsen, Distance measures to compare real and ideal quantum processes, Phys. Rev. A 71 (2005Jun), 062310.
- [6] R. Konig, R. Renner, and C. Schaffner, The operational meaning of min- and max-entropy, IEEE Transactions on Information Theory 55 (2009), no. 9, 4337–4347.
- [7] W. Forrest Stinespring, Positive functions on C^{*}-algebras, Proceedings of the American Mathematical Society 6 (1955), 211–216.
- [8] M. Tomamichel, R. Colbeck, and R. Renner, Duality between smooth min- and max-entropies, IEEE Transactions on Information Theory 56 (2010), no. 9, 4674–4681.
- [9] A. Uhlmann, The "transition probability" in the state space of a *-algebra, Reports on Mathematical Physics 9 (1976), no. 2, 273 –279.