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Abstract

Contents to be covered in this lecture are

1. Linear algebra in Dirac notation;

2. Quantum postulates;

3. No-cloning theorem.

1 Linear Algebra in Dirac notation

The aim of this section is to let the readers be familiar with the notations used in the quantum
community. In particular, we will adopt the bra-ket notation invented by Paul Dirac in 1939.

A d-dimensional Hilbert space H is a vector space equipped with an inner product. Let {ei}d−1i=0

be the computational basis, where ei is a column vector of zeros except a ‘1’ at the (i+ 1)-th entry.
Any vector v ∈ H can be expressed as

v =
d−1∑
i=0

viei, (1)

for some complex number vi ∈ C. The inner product (or dot product) ‘·’ of two vectors u and v in
H is defined as

u · v = u†v =

d−1∑
i=0

u∗i vi, (2)

where † denotes transpose and conjugate.
Now we are ready to introduce the bra-ket notation. Throughout this subject, we will denote

|i〉 ≡ ei and write v as |v〉:

|v〉 =

d−1∑
i=0

vi|i〉. (3)

The inner product of |u〉 and |v〉 in H becomes

〈u|v〉 =
∑
i,j

u∗i vj〈i|j〉 =
∑
i

u∗i vi (4)
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where 〈u| ≡ |u〉† is now a row vector and 〈i|j〉 = δi,j .
For a Hilbert space H, we denote L(H) the collection of linear operators L : H → H. We denote

the identity operator I =
∑d−1

i=0 |i〉〈i|. Given an linear operator L, there is an equivalent matrix
representation [Li,k] in the basis spanned by {|i〉〈k|}:

L =
d−1∑
i,k=0

Li,k|i〉〈k|, (5)

where Li,k = 〈i|L|k〉.
An linear operator H ∈ L(H) is called Hermitian if and only if H† = H. For a Hermitian

matrix H, the spectral theorem states that there exists an orthonormal basis {|νi〉} and real numbers
{λi} ∈ R so that

H =
∑
i

λi|νi〉〈νi|. (6)

Equivalently, {λi} and {|νi〉} are known as eigenvalues and eigenvectors of H, respectively.
A Hermitian operator P ∈ L(H) is positive, denoted as P ≥ 0, if and only if 〈v|P |v〉 ≥ 0 for all

|v〉 ∈ H. We denote L(H)+ = {P ≥ 0 : P ∈ L(H)} the set of positive semi-definite operators on H.

Exercise 1. Define the Hadamard product of two matrices A,B ∈ L(H):

A ◦B =
d−1∑
i,j=0

Ai,jBi,j |i〉〈j|. (7)

Show that if A,B ∈ L(H)+, then A ◦B ∈ L(H)+.

For any continuous function f : R → R, we define the matrix function f(H) on a Hermitian
matrix H by

f(H) =
∑
i

f(λi)|νi〉〈νi|, (8)

where H has the spectral decomposition in Eq. (6).

Exercise 2. Let

H =

(
0 1
1 0

)
.

Compute eH .

We say f is convex if

f((1− p)A+ pB) ≤ (1− p)f(A) + pf(B) (9)

for all Hermitian matrices A and B and for 0 ≤ p ≤ 1. We say f is monotone if f(A) ≥ f(B)
whenever A ≥ B.

Exercise 3. • For f(x) = 1
x , f is convex on L(H)+.

• For f(x) = xr, f is convex on L(H)+ for 1 ≤ r ≤ 2.

• For f(x) = xr, f is monotone on L(H)+ for 0 ≤ r ≤ 1.

• For f(x) = x3, show that f is not convex on L(H)+ with an example.
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1.1 Tensor product of Hilbert spaces

Given two vectors |u〉 ∈ HA and |v〉 ∈ HB, the tensor product ‘⊗’ of them is

|u〉 ⊗ |v〉 =

dA−1∑
i=0

dB−1∑
j=0

uivj |i〉 ⊗ |j〉, (10)

a vector of dAdB-dimension. If {|i〉A} and {|j〉B} are orthonormal bases inHA andHB, respectively,
then {|i〉A ⊗ |j〉B}, i ∈ {0, · · · , dA − 1} and j ∈ {0, · · · , dB − 1}, forms an orthonormal basis in
HA ⊗HB. The inner product on the space HA ⊗HB is defined by

(〈v2|B ⊗ 〈u2|A)(|u1〉A ⊗ |v1〉B) = 〈u2|u1〉〈v2|v1〉. (11)

This definition extends to tensor product of linear operators in L(H):

L⊗M =

dA−1∑
i,j=0

Li,j |i〉〈j|

⊗
dB−1∑
k,`=0

Mk,`|k〉〈`|,


=

dA−1∑
i,j=0

dB−1∑
k,`=0

Li,jMk,`|i〉〈j| ⊗ |k〉〈`|. (12)

Useful properties of tensor product are summarised as follows.

1. (A1 ⊗ · · · ⊗Ak)(B1 ⊗ · · · ⊗Bk) = (A1B1 ⊗ · · · ⊗AkBk)

2. (A1 ⊗ · · · ⊗Ak)−1 = A−11 ⊗ · · · ⊗A
−1
k

3. (A1 ⊗ · · · ⊗Ak)† = A†1 ⊗ · · · ⊗A
†
k

4. If λ1, · · · , λk are eigenvalues of A1, · · · , Ak with eigenvectors |u1〉, · · · , |uk〉, respectively, then∏k
i=1 λi is an eigenvector of A1 ⊗ · · · ⊗Ak with respect to the eigenvector |u1〉 ⊗ · · · ⊗ |uk〉.

1.2 Trace and Partial Trace

The trace Tr : L(H)→ C is a linear map defined by

Tr |j〉〈k| = 〈k|j〉 = δk,j . (13)

Extended by linearity, the trace of a linear operator L is then

TrL = Tr

 d−1∑
i,k=0

Li,k|i〉〈k|


=

d−1∑
i,k=0

Li,k Tr |i〉〈k| (14)

=

d−1∑
i,k=0

〈i|L|k〉δi,k (15)

=
d−1∑
i=0

〈i|L|i〉. (16)
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Exercise 4 (Cyclic property). Show that TrLM = TrML.

Note that TrL†M defines an inner product on the space of L(H), and is known as the Hilbert-
Schmidt inner product.

The partial trace TrA : L(HAB)→ L(HB) is defined by

TrA(|i〉〈j|A ⊗ |k〉〈`|B) = 〈j|i〉|k〉〈`|B = δi,j |k〉〈`|B. (17)

Exercise 5. Let |Φ〉AB = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). Compute TrA(|Φ〉〈Φ|AB).

2 Quantum Postulates

2.1 Quantum States

Before defining what a quantum state looks like, we start with the classical notion of information.
The basic unit of classical information is a bit b ∈ Z := {0, 1} that takes value of either ‘0’ or ‘1’.
The classical bit b can be generated randomly with a certain distribution P satisfying

Pr{b = 0} = 1− Pr{b = 1} = p ∈ [0, 1].

However the bit b could never take non-binary value.
A quantum generalization of the classical bit, called a quantum bit or qubit, is mathematically

defined as (
α
β

)
(18)

where α, β ∈ C such that |α|2 + |β|2 = 1. Instead of using the vector form in Eq. (18), we will
adopt the notation convention, the Dirac notation introduced in Section 1. Specifically, we will use
the ket notation |·〉 to denote a column vector of length one, e.g.,

|b〉 :=

(
α
β

)
, (19)

and use the bra notation 〈·| to denote the hermitian conjugate of |·〉:

〈b| :=
(
α∗ β∗

)
. (20)

We will also denote the computational basis of a d dimensional Hilbert space as {|0〉, |1〉, · · · , |d−1〉},
where |i〉 is a column vector of zeros except a ‘1’ in the (i+ 1)-th entry. The qubit |b〉 in Eq. (18)
can be written as

|b〉 = α|0〉+ β|1〉. (21)

The quantum state |b〉 is viewed as in a superposition of states |0〉 and |1〉, a phenomenon unique in
quantum mechanics. Generally, a quantum state in a d-dimensional Hilbert space can be expressed

|ψ〉 =

d−1∑
i=0

αi|i〉, (22)

where the amplitude αi satisfies
∑

i |αi|2 = 1.
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A quantum state can also be randomly prepared: with probability pi, the state |ψi〉 is prepared.
The resulting quantum ensemble E : {pi, |ψi〉} can be denoted by a density operator

σE :=
∑
i

pi|ψi〉〈ψi|, (23)

which is essentially a positive semi-definite matrix with trace one. We will denote by D(H) the
collection of positive semi-definite matrices with trace one on the Hilbert space H. The density
matrix representation of a quantum state is considered to be the most general form in the following
sense. If the ensemble only contains one entry, namely, σE ≡ |ψ0〉〈ψ0| is of rank one, we say that
the quantum state is pure. Otherwise, it is mixed.

Exercise 6. For a density operator σ ∈ D(H), show that Trσ2 ≤ 1 with equality if and only if σ
is pure.

The density matrix representation also incorporates the notion of classical random bit; namely
if σE is diagonal

σE :=

(
p0 0
0 p1

)
, (24)

then this means that the state σE is prepared in |0〉 with probability p0 and in |1〉 with probability
p1.

Take Home

A quantum state can be represented by a positive semi-definite matrix with
trace one.

2.2 Composite Quantum Systems

Again, let us start with the classical systems. It is rather easy and trivial to describe a joint classical
state. Say the first bit is 0 and the second bit is 1, then its composite (or joint) classical system is
a bit string (0, 1). Such a joint rule is described by the Cartesian product ×, i.e., composition of
two sets A and B, denoted A×B, is

A×B = {(a, b) : a ∈ A and b ∈ B}. (25)

We can extend the Cartesian product to include n classical systems, which is represented by an
n-dimensional string, where each element is an n-tuple.

Given two quantum states |ψ〉A ∈ HA and |φ〉B ∈ HB, the joint quantum state is |ϕ〉AB ≡
|ψ〉A ⊗ |φ〉B ∈ H ≡ HA ⊗ HB, where ⊗ is the tensor product . Tensor product can also extend
a joint quantum system to include n subsystems. If one of the subsystems, say HA, is lost from
|ϕ〉AB, the residue quantum state returns to

|φ〉〈φ|B = TrA |ϕ〉〈ϕ|. (26)

What is interesting in quantum mechanics is that there exist pure quantum states in H that
cannot be decomposed into tensor product of two pure states in HA and HB, respectively. A most
notable example is the Bell state

|Φ+〉AB :=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). (27)
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Such a state is called an entangled state, a quantum state that contains entanglement. For an
entangled state, if its partial system is lost, then it will decay into a mixed state.

Take Home

A bipartite pure quantum state is entangled if and only if it cannot be decom-
posed into tensor product of two local pure quantum state.

Exercise 7 (Schmidt decomposition). Show that a bipartite pure state |ψ〉AB ∈ HA ⊗HB can be
written as

|ψ〉AB =
∑
i

λi|νi〉A ⊗ |ξi〉B (28)

where λi ≥ 0,
∑

i |λi|2 = 1 and {|νi〉A} and {|ξi〉B} are some orthonormal bases for HA and HB,
respectively.

Exercise 8 (Purification). Show that a mixed state σA =
∑

i λi|νi〉〈νi| can be purified as follows.
There exists a bipartite pure state |ψσ〉 ∈ HA ⊗H′A so that

|ψσ〉 =
∑
i

√
λi|νi〉A ⊗ |ξi〉A′ , (29)

where {|ξi〉} is any orthonormal set of vectors in HA′.

Let us return to the scenario of a quantum ensemble E : {px, |ψx〉}x∈X . Suppose that the person,
say Alice, who prepares this ensemble can keep track of ‘which state’ she prepared. In other words,
she has the additional classical label |x〉〈x| attached to the state σx ∈ D(HB), where {|x〉} forms
an orthonormal basis of HX . Such a hybrid classical-quantum system can be described as

σXB =
∑
x∈X

px|x〉〈x| ⊗ |ψx〉〈ψx|. (30)

This is an example of the Church of the Larger Hilbert Space. Forgetting (or lost) the classical
information will result in

σB = TrX σXB =
∑
x∈X

px|ψx〉〈ψx|,

given in Eq. (23).
Consider a general mixed state σAB ∈ D(HA ⊗HB), we say σAB is separable if

σAB =
∑
i

piσ
i
A ⊗ σiB (31)

where
∑

i pi = 1. In other words, σAB is separable if it can be written as convex combination of
product states.

Take Home

A bipartite mixed quantum state is entangled if and only if it is not separable.

Exercise 9. Argue why separable states do not contain entanglement.
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2.3 Quantum Evolution

The time evolution of a close quantum system is modelled by a unitary U ; namely,

ρ→ UρU †. (32)

The unitary evolution can be viewed as solving the Schrodinger equation

i~
d

dt
|ψ〉 = H|ψ〉 (33)

where ~ is the Planck constant and H is the system Hamiltonian.
We will describe the general (or noisy) evolution, i.e., quantum channels, in the second lecture.

2.4 Quantum Measurement

Quantum measurement is a process to observe the classical information within a quantum state. It
can destroy the superposition property of a quantum state. The quantum measurement postulate
evolves from Born’s rule in his seminal paper in 1926, which states that “the probability density of
finding a particle at a given point is proportional to the square of the magnitude of the particle’s
wave function at that point”. Given the qubit state |b〉 in Eq. (21), Born’s rule says that we
can observe this qubit in state |0〉 with probability |α|2 and in state |1〉 with probability |β|2.
Furthermore, after the measurement, the qubit state |b〉 will disappear and collapse to the observed
state |0〉 or |1〉.

In general, a quantum measurement is mathematically described by a collection of Υ := {Mi},
where each measurement operator Mi ∈ L(H) satisfies∑

i

M †iMi = I. (34)

The probability of obtaining an outcome i on a quantum state ρ is

pi := Tr(MiρM
†
i ) (35)

and the residue quantum state becomes

ρi :=
MiρM

†
i

pi
.

The nomarlised condition in Eq. (34) guarantees that∑
i

pi =
∑
i

Tr(MiρM
†
i )

= Tr

(∑
i

M †iMiρ

)
= Tr ρ = 1. (36)
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Projective Measurement and Observables

A special instance of quantum measurements is the projective measurement. A projective measure-
ment Υ is a collection of projectors {P0, P1, · · · , PL−1} which sum to identity. Note that PiPj = 0
for i 6= j and P 2

i = Pi. When we measure a quantum state |φ〉 with Υ, we will get the outcome j
with probability

pj := Tr(Pj |φ〉〈φ|)

and the resulting state
Pj |φ〉√
pj
.

A projective measurement Υ = {Pi} with the corresponding measurement outcomes {λi} ∈ R
can be efficiently represented by a Hermitian matrix H =

∑
i λiPi. Such a matrix is called an

observable. In physics, an observable is a physical quantity that can be measured. Examples of
observables of a physical system include the position or momentum of a particle, among many
others.

Measuring the observable H means that performing the projective measurement Υ = {Pi} on
a quantum state |φ〉. It follows that the expected value of the outcomes if we measure the state |φ〉
with Υ = {Pi} is

〈H〉 :=
∑
i

λi TrPi|φ〉〈φ| = 〈φ|H|φ〉. (37)

If each projector Pi ∈ Υ is of rank one, Pi = |i〉〈i|, where {|i〉}i∈X forms a basis for HX ,
we will often call such a projective measurement Υ a von Neumann measurement. With the von
Neumann measurement Υ = {|i〉〈i|}, we can then argue the operational equivalence between a
quantum ensemble E = {px, |ψx〉}x∈X and the corresponding hybrid classical-quantum state σXB
in Eq. (30):

1. Measuring the subsystem X with the von Neumann measurement Υ will leave subsystem
B in the state |ψi〉 with probability pi, for i ∈ X . This results in the quantum ensemble
E = {px, |ψx〉}x∈X .

2. Conversely, given a quantum ensemble E , we have stated how one can prepare the hybrid
classical-quantum state σXB in Eq. (30).

Positive-operator-valued Measure (POVM)

POVM is a collection of subnormalised positive semi-definite matrices {Λi} where each I ≥ Λi ≥ 0
and

∑
i Λi = I. It allows us to only focus on the probability distribution of the measurement

outcomes. Recall that in Eq. (35), we can equate Λi = M †iMi. Hence the probability of obtaining
the outcome i on the quantum state |φ〉 is given by

pi = Tr(Λi|φ〉〈φ|).

Exercise 10. Show that every POVM can be constructed by a projective measurement on a larger
Hilbert space.

Quantum measurement can be used to distinguish a set of quantum states. We will elaborate
a fundamental result, i.e., quantum state discrimination, in the second lecture.
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Further Reading

A very good lecture note by Ronald de Wolf can be downloaded here [1].

3 No Cloning Theorem

In classical domain, a classical bit can be copied as many times as we want. However, it was shown
to be impossible to copy an arbitrary unknown quantum state. This no-go theorem of quantum
mechanics was first popularized by Wootters and Zurek in their Nature paper [3], but later realised
that the idea has been proposed in [2].

Suppose that we have two quantum systems of equal size HA = HB. Given a quantum state
|φ〉A ∈ HA, if quantum mechanics allows the operation of ‘copying’, then this copying operation
Ucopy should achieve

Ucopy(|φ〉A ⊗ |0〉B) = |φ〉A ⊗ |φ〉B. (38)

In other words, the copying operation should produce a second copy of |φ〉 in HB (that was initially
prepared in some ground state |0〉B.)

Theorem 11 (No-Cloning theorem). There is no unitary operation Ucopy on HA ⊗HB such that
for all |ψ〉A ∈ HA and |0〉B ∈ HB

Ucopy(|φ〉A ⊗ |0〉B) = eif(φ)|φ〉A ⊗ |φ〉B (39)

for some number f(φ) that depends on the initial state |φ〉.

Proof. We can prove this theorem by contradiction. Assume such a coping operation Ucopy exists.
Then for any two states |ψ〉A, |φ〉A ∈ HA, the following holds

Ucopy(|φ〉A ⊗ |0〉B) = eif(φ)|φ〉A ⊗ |φ〉B (40)

Ucopy(|ψ〉A ⊗ |0〉B) = eif(ψ)|ψ〉A ⊗ |ψ〉B. (41)

Now

(〈0|B ⊗ 〈φ|A)U †copyUcopy(|ψ〉A ⊗ |0〉B) = 〈φ|ψ〉A (42)

= ei(f(ψ)−f(φ))〈φ|ψ〉A〈φ|ψ〉B. (43)

The first equality follows because U †copyUcopy = I and 〈0|0〉B = 1. Hence

|〈φ|ψ〉A|2 = |〈φ|ψ〉A|, (44)

which implies that either |〈φ|ψ〉A| = 1 or |〈φ|ψ〉A| = 0. This allows us to conclude that not a single
universal copying operation Ucopy exists for two arbitrary states.
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