
41076: Methods in Quantum Computing

Maria Kieferova

July 2020

1 Hamiltonian simulation

Given an initial state of a system |ψ(0)〉 and a Hamiltonian H, our goal is to
simulate the time evolution |ψ(0)〉 → e−iHt |ψ(0)〉. The goal of Hamiltonian
simulation is to design a circuit U consisting of gates and oracles that approxi-
mates the time evolution up to an error ε such that∥∥∥U− e−iHt

∥∥∥
2
< ε, (1)

where ‖·‖2 is the spectral norm.

Figure 1: Hamiltonian simulation approximates the time evolution by a series
of digital operations.

Quantum systems are fundamentally difficult to simulate; dynamics of
quantum systems is a BQP-hard (or BQP complete for Hamiltonians with natural
restrictions). Except for a few special cases, the complexity of the best known
classical algorithms grows exponentially with the number of qubits. As such,
simulation of quantum dynamics is a field where quantum computers can
quickly outperform classical ones. In fact, the time evolution of quantum
systems was the original application for quantum computers suggested by
Feynman.

In the simplest scenario, we assume that the simulated Hamiltonians are
given in the form H =

∑m
j=1Hj, where each Hj is local and e−iHjt can be

1

implemented directly for arbitrary t. A common case is when these Hj are Pauli
matrices.

The simplest quantum simulation algorithms rely on the Lie-Trotter formula

lim
r→∞

(
eA/reB/r

)r
= lim
r→∞

(
(1 +

A

r
)(1 +

B

r
)

)r
(2)

= lim
r→∞

(
1 +

A+B

r
+
AB

r2

)r
(3)

= lim
r→∞

(
1 +

A+B

r

)r
(4)

= eA+B (5)

Since the individual terms in the Hamiltonian typically not commute, de-
composing an exponential of a sum into a finite sum of exponentials will lead
to errors.

Exercise: Prove that
∥∥∥eA+B −

(
eA/reB/r

)r∥∥∥ ∈ O
(
‖A+B‖t2

r

)
.

Next, we can recursively that for H =
∑m
j=1Hj, one can decompose the

evolution with respect to H into the evolution with respect to each Hj as

Ũ =
(
e−iH1t/re−iH2t/r . . . e−iHmt/r

)r
+O(‖H‖ t2/r). (6)

Thus, if we are willing to tolerate error at most ε, we need to perform

O(
‖H‖t2

ε).
Up to now, we assumed that we know how to implement each e−iHjt

directly. Let us now show how to implement them in some simple cases.
In the simplest case, Hj is a Pauli matrix Z acting on the jth qubit. The

Hamiltonian evolution is then a Z-rotation on the jth qubit.

e−itZ = e−it |0〉 〈0|+ eit |1〉 〈1| (7)

Next, we show how to simulate a tensor product of Zs

H = Z1 ⊗Z2 ⊗ · · · ⊗Zn. (8)

We first prove the following identity. For an arbitrary unitary U:

Ue−iHtU† = U
∞∑
k=0

(−iHt)k

k!
U† (9)

= UU† − iUHU†t+ i2UH(UU†)Ht2U†

− i3UH(UU†)H(UU†)HU†t2 + . . . (10)

=

∞∑
k=0

(−iUHU†t)k

k!
(11)

= e−iUHU
†t. (12)

2

• •
• •

...
. ...• •

e−itZ

Figure 2: Simulating a tensor product of Pauli Zs.

We can implement e−iZ1⊗···⊗Znt using the circuit in Fig. 2
The correctness of the circuit can be showed through induction. We already

proved the first step in (7). In the inductive step, we conjugate an existing circuit
by CNOTs. We can rewrite CNOTe−itZ1⊗Z2⊗···⊗Zn−1CNOT as:

(I⊗ |0〉〈0|+X⊗ |1〉〈1|)
(

I⊗ e−itZ1⊗···⊗Zn−1
)
(I⊗ |0〉〈0|+X⊗ |1〉〈1|) (13)

=⊗ e−itZ1⊗···⊗Zn−1 ⊗ |0〉〈0|+Xe−itZ1⊗···⊗Zn−1X⊗ |1〉〈1| (14)

=e−itZ1⊗···⊗Zn−1 ⊗ |0〉〈0|+ eitZ1⊗···⊗Zn−1 ⊗ |1〉〈1| (15)

=e−itZ1⊗Z2⊗···⊗Zn−1⊗Zn (16)

Simulating other Paulis is possible by changing the basis. Recall that
e−itUHU

†
= Ue−itHU†. We can then use the identities

X = Had Z Had (17)

Y = S†Had Z Had S† (18)

We used Had instead of H to denote the Hadamard gate since we reserved the
symbol H for Hamiltonians.

This allows us to simulate evolution according to any Pauli. For example,
we can simulate the evolution according to the H = X⊗ Y ⊗Z according to the
circuit in Fig. 3.

Had • • Had

S† Had • • Had S

e−itZ

Figure 3: X and Y Paulis can be simulated by a change of basis. The circuit
above depicts the simulation according to e−itX⊗Y⊗Z.

Now we know how to simulate any Hamiltonian that is a sum of Paulis. The
complexity of the algorithm for simulating a Hamiltonian H =

∑L−1
l=0 Pn where

3

P is a Pauli on n qubits is

O(
Lt2n

ε
) (19)

However, there is still a need for more efficient algorithms. First, the number
of terms L needed to decompose a Hamiltonian into a sum of Paulis can be
exponentially large. Second, the scaling in terms of t and ε is quite poor.

Other Hamiltonian simulation algorithms allow for different decomposition
of Hamiltonians. A popular one is decomposing a sparse matrix into 1-sparse
matrices which can be then simulated directly. Another one is decomposition
into a linear combination of unitaries (LCU) which a generalization of the Pauli
decompositions.

Exercise: Let ρ,σ be density matrices, S the SWAP operator and Trp partial
trace over the first variable. Show that

Trp[e−iS∆ρ⊗ σeiS∆] = e−iρ∆σeiρ∆ +O(∆2)

In these more general cases the Hamiltonian is accessed through an oracle.
One type of oracular access is particularly common when the Hamiltonian (in a
computational basis) is given by a sparse matrix. We say a Hamiltonian is row-d-
sparse if each row has at most d non-zero entries. If there is an efficient procedure
to locate these entries we moreover say that the Hamiltonian is row-computable.
In this case, one can efficiently construct oracles

Oloc |r,k〉 = |r,k⊕ l〉 (20)
Oval |r, l, z〉 = |r, l, z⊕Hr,l〉 . (21)

Oracle Oloc locates the position l of the k-th non-zero element in row r. The
oracle Oval then gives the value of the matrix element Hr,l. We compute the
cost of algorithms in terms of the number of queries to these oracles.

It is possible to construct different oracles. Any Hermitian matrix can be
decomposed into a sum of unitaries

H =

L−1∑
l=0

αlVl, (22)

where for each l, αl 6 0 and Hl is a unitary matrix ‖Hl‖ = 1. This decomposi-
tion can be efficiently implemented for sparse Hamiltonians. The coefficients αl
and unitaries Hl can be accessed through oracles

Oα |l, z〉 = |l, z⊕αl〉 (23)
OVl |l,ψ〉 = Vl |l,ψ〉 , (24)

or, in some cases, described classically.

4

1.1 Further reading

Efficient quantum algorithms for simulating sparse Hamiltonians
G. Ahokas, R. Cleve, B.C. Sanders, D.W. Berry
arXiv:quant-ph/0508139

Simulating Hamiltonian dynamics with a truncated Taylor series
D. W. Berry, A. M. Childs, Richard Cleve, R. Kothari, R. D. Somma
arXiv:1412.4687

Quantum singular value transformation and beyond: exponential improve-
ments for quantum matrix arithmetics

A Gilyén, Y Su, GH Low, N Wiebe
arXiv:1806.01838

2 Linear Systems

An important application of Hamiltonian simulation is “solving” systems of
linear equations. The definition of solving is different for quantum and classical
algorithms. While the classical algorithm outputs the solution of the linear
system, quantum algorithms encode the solution into a quantum state. We will
first review the classical approaches to solving systems of equations and then
explain the corresponding quantum algorithms.

A system of equations can be written in a standardized form

a11x1 + a12x2 + · · ·+ a1nxN = b1

a11x1 + a12x2 + · · ·+ a1nxN = b1

... (25)
an1x1 + an2x2 + · · ·+ annxN = bn,

or a matrix equation
Ax = b (26)

where A encode the coefficients in the equations, the vector x are the unknowns
and b stores the right hand side of equations. The solution then can be written
as

x = A−1b (27)

if the matrix A is indeed invertable. We will for now assume that this is the case
and consider the linear system problem to be equivalent to matrix inversion.

One of the most well-known algorithms is Gaussian elimination with com-
plexity O

(
N3). While the complexity is polynomial in the number of equations

and therefore “efficient”, cubic runtime is impractical for large systems. There-
fore, there is a lot of interest in finding more efficient exact and approximation
algorithms.

The first quantum linear systems algorithm is referred to as HHL after
the initials of its creators - Harrow, Hassidim and Lloyd. The linear system

5

algorithm makes efficient use of phase estimation. It is sufficient to consider
Hermitain matrix; if the matrix A is not hermitian, a Hermitian matrix can be

created as H =

(
. A

A† .

)
and take the right hand side into

(
b
0

)
. The solution

will this new system will then be
(

0
x

)
. Without the lost of generality, we will

from now on assume that A is hermitian.
Let |αi〉 and λi be the eigenvectors and eigenvalues ofA and |b〉 =

∑
i βi |αi〉

be a decomposition of the right-hand side into this basis.
Using Hamiltonian simulation (with t=1) we and phase estimation we can

prepare
|b〉 |0 . . . 0〉 |0〉 →

∑
i

βi |αi〉
∣∣∣̃λi〉 |0〉 . (28)

Next, we apply a rotation conditioned on
∣∣∣̃λi〉 to prepare

∑
i

βi |αi〉
∣∣∣̃λi〉

(√
1 −

C2

λ̃2
i

|0〉+ C

λ̃i
|1〉

)
, (29)

whereC = O (1/κ). The phase estimation is the uncomputed, erasing the second
register, and we are left with(√

1 −
C2

λ̃2
i

∑
i

βi |αi〉 |0 . . . 0〉 |0〉+ C

λ̃i

∑
i

βi |αi〉 |0 . . . 0〉 |1〉

)
. (30)

In case when the last qubit is in state 1, the resulting state on the first register
is proportional to

∑
i λ

−1
i βi |λ〉i

Overall, the complexity of the algorithm is Õ
(

logns
2κ2

ε

)
.

While HHL achieves exponential improvement in nwhen naively compared
to classical algorithms, its scaling in the error ε and the conditioning number κ
is not optimal.

However, this comparison is not completely fair. First, the algorithm is
limited to matrices that can be effectively encoded in a quantum computer
which are usually either sparse or low-rank matrices. Second, the state b also
needs to be prepared effectively on a quantum computer. Lastly, the output of
HHL is a quantum state and outputting it (i.e., writing it on a paper) would
result in an exponential overhead and worse performance than most classical
algorithms. Instead, the task of the quantum computer is often only to sample
from the solution. A recent result managed to ”de-quantize” many applications
of HLL and showed that an algorithm for ”solving” linear systems with a
low-rank matrix and sampling from the solution can be simulated classically.

2.1 Further reading

Quantum algorithm for solving linear systems of equations

6

AW Harrow, A Hassidim, S Lloyd
arXiv:0811.3171

Quantum Machine Learning Algorithms: Read the Fine Print S Aaronson
https://www.scottaaronson.com/papers/qml.pdf

Sampling-based sublinear low-rank matrix arithmetic framework for de-
quantizing quantum machine learning

N Chia, A Gilyén, T Li, H Lin, E Tang, C Wang
arXiv:1910.06151

3 Quantum Machine Learning (QML)

HLL can be applied to various quantum machine learning problems. QML build
on the intuition that most of machine learning is some form of linear algebra
in high-dimensional spaces and quantum computing is good at performing
algebra at high-dimensional spaces1. However, we will see that that obtaining
quantum speedup for machine learning algorithms is not so straightforward.

3.1 Least-squares fitting

The first application is to apply HLL algorithm for data fitting. Our goal is to
to find a parameters λ such that a parametric function f(x,λ) will provide an
optimal fit for N datapoints {xi,yi}.

The function is constrained to be linear in the fit parameters λ ∈ CM, but
it can be non-linear in x. For example, we can encode f(x,λ) = a+ bx+ cx2 as
λ = (a,b, c) and x = (1, x, x2).

To goal of the algorithm is then find the parameters λ to minimize

E =

N∑
i=1

|f(xi,λ) − yi|2 = |Fλ−y|2. (31)

Here we defined Fij = fj(xi) to be anN×Mmatrix. Note that F is generally
not invertable, however, we can assume that 1

κ 6
∥∥F†F∥∥ < 1. One can then

show that the minimum of (31) is achieved by

λ = F+y =
(
F†F
)−1

Fy, (32)

where F+ is Moore–Penrose pseudoinverse.
The quantum version of least squares fitting assumes that y is encoded into

a quantum states |y〉 =
∑M+N
j=M+1 yj |j〉 /normy. Similarly, the output |λ〉 will be

also given only as a quantum state. Additionally, we have an oracular access to

1From Seth Lloyd, paraphrased

7

Figure 4: SVM for 2-dimensional data. The red line maximizes the separation
between the classes. Source: Wikipedia

F̃ =

(
· F

F† ·

)
. For an efficient algorithm, F̃must belong into a class of simulable

Hamiltonians such as sparse or low-rank ones.
The algorithm for least square fitting is then a technical modification of the

HLL algorithm. First, we need to prepare F |y〉. This can be accomplished using
HHL but though Hamiltonian evolution and phase estimation just as in HLL
but instead of diving by the eigenvalues we will multiply by them. The inverse
of F†F is accomplished though HHL as well. The resulting query complexity
of the algorithm is Õ

(
log(N)s4κ6/ε

)
where s is the sparsity and the notation Õ

suppresses log-factors.

3.2 Quantum Support Vector Machine

Support vector machine (SVM) is a supervised machine learning algorithm for
data classification. The algorithm is given a set of data where each data point
belongs to one of two categories (green or blue). The goal of the algorithm is
to find a hyperplane that would separate the green points from the blue ones.
Since there are many such hyperplanes, we aim to find one that separates them
with the largest margin, see Fig. 4. This is an example of a non-probabilistic
binary linear classifier and although SVMs can be generalized to find non-linear
classifiers, we will focus on this simple example.

We know from analytic geometry that a hyperplane is a set of points x that
satisfy

w · x− b = 0, (33)

wherew is the normal vector. Note that we do not require w to be normalized –

8

it’s norm will determine the side of the boundary. We will require that all the
blue points x satisfy

w · x− b > 1, (34)

and for each the green point

w · x− b < −1, (35)

as in Fig. ??. If we use y = +1 to label all the blue data and y = −1, we can
consolidate (34) and (35) as

yi(w · xi − b) > 1, ∀(xi,yi) ∈ training set, . (36)

The goal of the training is then to minimize ‖w‖ subject to the constrain (36).
To turn SVM into a quantum algorithm, we use the usual tricks, turning

vectors into quantum states, and reformulate (36) and reformulating SVM as a
linear system that can be solved using HLL.

3.3 The weaknesses of quantum machine learning

We saw two algorithms that appear to give exponential speedup over their
classical counterparts. Indeed, in our setting, the runtimes of the algorithms are
faster than even writing the complete input. This is because the assumptions
about the input and output of the quantum algorithms are much stronger than
what is considered in the classical case. Let us reiterate the assumptions: first,
we assume that the input data is encoded as amplitudes of a quantum state.
While we have such an encoding is possible, preparing such state, in general,
requires exponentially many gates. Second, we assumed that any matrices can
be embedded into easy to simulate Hamiltonian and easily accessible. This
means that the exponential speedup exists ONLY with respect to an oracle that
encodes such a Hamiltonian. Lastly, we are only required to output the solution
as a quantum state instead of fully writing it out.

The input problem is abstracted by a quantum random memory (QRAM).
QRAM can return data as

QRAM |j〉 |0 . . . 0〉 = |j〉
∣∣ψj〉 (37)

and can operate in superposition. See https://youtu.be/IicCWK2D7sg for
QRAM construction. If the Hermitian matrix encoding the data is low-rang,
QRAM allows for efficient implementation of QML algorithms

Surprisingly, Ewin Tang (followed by others) managed to dequantize multi-
ple quantum algorithm that relied on QRAM constructions. Her approach used
sampling and randomized algebra techniques. As such, there are currently no
known QML algorithms with provable, non-oracular exponential speedup.

9

3.4 Further Reading

Quantum machine learning
J Biamonte, P Wittek, N Pancotti, P Rebentrost, N Wiebe, S Lloyd
arXiv:1611.09347

A quantum-inspired classical algorithm for recommendation systems
E Tang
arXiv:1807.04271v3

Key questions for the quantum machine learner to ask themselves
N Wiebe
https://iopscience.iop.org/article/10.1088/1367-2630/abac39/meta

10

	Hamiltonian simulation
	 Further reading

	Linear Systems
	Further reading

	Quantum Machine Learning (QML)
	Least-squares fitting
	Quantum Support Vector Machine
	The weaknesses of quantum machine learning
	Further Reading

