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Abstract

Contents to be covered in this lecture are

1. BQP

2. Local Hamiltonian problem is QMA-complete

3. QIP=PSPACE

4. IQP and Boson sampling

In this module, we will introduce fundamental results in quantum complexity theory. The
purpose of this module is to understand what problems can be efficiently solved on a quantum
computer, and what problems remain difficult even if we have a quantum computer. Understanding
the boundary between different complexity classes will help us to better identify the power of
quantum computation versus classical computation.

1 Overview of complexity theory and definitions

In the computational complexity theory, the goal is to prove lower bounds on the time or space
resources required by the best possible algorithm for solving the problem.

1.1 Computational models

Complexity classes are defined in terms of computational models, including

• Turing machines;

• Interactive proof systems;

• Boolean circuits;

• Quantum Turing machines;

• Quantum interactive proof systems;
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1.1.1 Turing machine

A Turing machine, which manipulates symbols on a strip of tape according to a set of rules, is
a mathematical model that represents a general computing machine. The deterministic Turing
machine (DTM) uses a fixed set of rules to determine its future actions; while the probabilistic
(Nondeterministic) Turing machine is allowed to explore multiple possible future actions from a
given state.

As a computational model, the Turing machine is able to compute an enormous variety of func-
tions, such as basic arithmetical operations, searching, and simulation of all operations performed
on a modern computer. Its theoretical foundation is summarized by the Church-Turing thesis:

Theorem 1 (Church-Turing thesis). The class of functions computable by a Turing machine cor-
responds exactly to the class of functions which we could naturally regard as being computable by
an algorithm.

Exercise 2. Show that the Turing machine cannot solve the ‘halting problem’: does the machine
with Turing number x halt upon input of the number y?

A quantum Turing machine can be defined in a way similar to the classical Turing machine. It
provides an abstract model that can capture the computation power of a quantum computer.

The (quantum) Turing machine will be used to define the complexity classes: P, BPP, BQP,
NP, and QMA in the subsequent section.

1.1.2 Interactive proof systems

An interactive proof system is an abstract machine that models computation as exchange of mes-
sages between two spatially separated parties, a prover and a verifier, where a prover is assumed
to have unlimited computational power but cannot be trusted, while the verifier is assumed to be
always honest. All interactive proof systems have to satisfy the following two conditions:

• Completeness: If the statement is true, the honest verifier can be convinced by the untrusted
prover.

• Soundness: If the statement is false, no prover can convince the honest verifier.

If the prover and the verifier are given access to quantum computation, then we have the
quantum interactive proof system.

The (quantum) interactive proof system will be used to define complexity classes: IP and QIP
in the subsequent section.

1.2 List of complexity classes

Computational problems can be formulated as decision problems; namely, problems with a yes or
no answer.

The following is a summary of major complexity classes.

• P: This class contains decision problems that can be solved by a deterministic Turing machine
in polynomial time.
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• BPP (bounded-error probabilistic polynomial time): This class contains decision problems
that can be solved by a probabilistic Turing machine in polynomial time with an error prob-
ability bounded away from 1/3 on every input.

• NP (nondeterministic polynomial time): This class contains decision problems for which
the problem instances whose answer is “yes” have proofs verifiable in polynomial time by a
deterministic Turing machine.

• PP (probabilistic polynomial time): This class contains decision problems that is solvable by
a probabilistic Turing machine in polynomial time, with an error probability less than 1/2
for all instances.

• IP (Interactive polynomial time): The class contains problems solvable by an interactive
proof system, where the verifier is a probabilistic polynomial-time machine with access to a
random bit string polynomial on the input size, and a polynomial number of messages are
exchanged before decision.

• PSPACE: This class contains all decision problems that can be solved by a Turing machine
using a polynomial amount of space. Note that PSPACE=IP.

• BQP (bounded-error quantum polynomial time): This class contains decision problems that
can be solved by a quantum computer in polynomial time with an error probability bounded
away from 1/3 on every input. It is the quantum analogue to the complexity class BPP.

• QMA (Quantum Merlin Arthur): This class contains decision problems for which the problem
instances whose answer is YES, have a polynomial-size quantum proof (a quantum state)
that convinces a quantum verifier in polynomial time with high probability. Moreover, when
the answer is NO, every polynomial-size quantum state is rejected by the verifier with high
probability. It is is the quantum analog of the complexity class NP.

• QIP (Quantum Interactive Polynomial time): The class contains the set of problems solv-
able by an interactive proof system with a polynomial-time verifier and one computationally
unbounded prover.

There are natural inclusions of these complexity classes as follows (see also Figure 1).

P ⊆ BPP ⊆ BQP ⊆ QMA ⊆ PP ⊆ PSPACE. (1)

P ⊆ NP ⊆ QMA ⊆ PSPACE. (2)

One of the fundamental results is QIP=PSPACE [4].

2 BQP: Efficient Quantum Computation

By definition, the class of BQP contains problems that can be efficiently solved if we have a
quantum computer. In order to show that a specific problem is BQP, the solution involves an
efficient quantum algorithm. Therefore it is important to know which kind of problems they are.

The following gives a formal definition of BQP. Denote by Σ∗ the collection of all (finite) strings
of symbols from the alphabet Σ. A language L over the alphabet Σ is a subset of the set Σ∗.
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Figure 1: The relations between complexity classes. Note that (i) the relation between BPP and NP is not known;
(ii) the relation between BQP and NP is also unknown.

Definition 3 (BQP). A language L = {Lyes, Lno} is in BQP(c, s) if and only if there exists a
polynomial-time uniform family of quantum circuits {Qn : n ∈ N}, where Qn takes n qubits as
input and outputs 1 bit, such that

• ∀x ∈ Lyes,
Pr{Q|x|(x) = 1} ≥ c;

• ∀x ∈ Lno,
Pr{Q|x|(x) = 1} ≤ s.

The class BQP is defined as BQP=BQP(2/3, 1/3).

In general, c and s in Definition 3 are polynomial functions: N→ [0, 1].

Exercise 4. Let r : N→ N be a polynomially bounded function and r(n) ≥ 2 for all n. Then

BQP = BQP(1− 2−r, 2−r).

Exercise 5 (BQP subroutine theorem). Show that BQPBQP = BQP.

We collect a list of BQP problems:

1. Integer factorization and discrete logarithm.

2. Approximating the Jones polynomial at certain roots of unity.

3. Quadratically signed weight enumerator problem.

4. Local Hamiltonian Eigenvalue Sampling.

5. Phase Estimation Sampling.
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2.1 Integer factorization and discrete logarithm

Integer factorization and discrete logarithm both belong to special cases of the hidden subgroup
problems for finite Abelian groups, and share some common properties. The difficult of finding
solutions to these problems classically has been used to construct various cryptographic applica-
tions, including RSA, Diffie-Hellman key agreement, ElGamal encryption, the ElGamal signature
scheme, the Digital Signature Algorithm, and the elliptic curve cryptography.

2.1.1 Integer factorization

The task of integer factorization is to decompose a composite number into a product of smaller
integers. If the factors are further restricted to prime numbers, it is known as prime factorization.
This problem is believed to be hard (outside P) because the best known classical algorithms are
sub-exponential in the problem size. Specifically, the best classical algorithm for a b-bit number n
requires running time

exp

((
3

√
64

9
+ o(1)

)
(lnn)

1
3 (ln lnn)

2
3

)
. (3)

It is generally believed that the integer factorization problem is not in class P because there are no
known efficient classical algorithms that can factor all integers in polynomial time. The problem is
clearly in class NP but has not been proved to be or not be NP-complete. However, this problem
is generally suspected not to be NP-complete.

2.1.2 Discrete logarithm

The task of discrete logarithm is to find the solution x to the equation bx = a given elements a and
b of a finite group G.

2.1.3 Shor’s algorithm

Peter Shor developed a quantum algorithm (now called Shor’s algorithm) that can solve integer
factorization and discrete logarithm in polynomial time [8]; hence placing this problem in BQP.

2.2 Jones polynomial

The problem of approximating the Jones polynomial of the plat closure of a braid at 2i2π/k for
constant k is BQP-complete [2].

2.3 Signed weight enumerator problem

Let A ∈ Zm×n2 and B ∈ Zn×n2 . The quadratically signed weigh enumerator is defined as

S(A,B, x, y) =
∑

b:Ab=0

(−1)b
TBbx|b|yn−|b|, (4)

where bT is the transpose of the column vector b ∈ Zn2 , |b| is the Hamming weight of b. We know
the following facts about computation of S(A,B, x, y).

• Given positive numbers k and `, computing S(A,B, k, `) is in the class #P.
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• Let Γ(A) be the lower triangular part of A, while the diagonal and the upper triangular
elements are set to zero. Given positive integers k and ` and the promise |S(A,Γ(A), k, `)| ≥
(k2+`2)n/2

2 , determining the sign of S(A,Γ(A), k, `) is BQP-complete [6].

2.4 Linear algebraic problems

Definition 6. Given are (1) a Hamiltonian H =
∑

iHi on n qubits, where i ranges over a set of
size polynomial in n and each Hi acts on a constant number of qubits; (2) an estimation precision
ε = Ω(1/poly(n)); (3) a sampling error probability δ = Ω(1/poly(n)); and (4) a classical n-bit string
b ∈ Zn2 . Suppose the eigenvalues and eigenvetors of H are {λk, |νk〉} satisfying |λk| < poly(n) for
each k. The local Hamiltonian eigenvalue sampling problem asks to output an estimation of λk up
to ε with probability at least (1− δ)|〈b|νk〉|2.

Definition 7. Given are (1) the description of a poly(n)-size quantum circuit U on n qubits; (2)
an estimation precision ε = Ω(1/poly(n)); (3) a sampling error probability δ = Ω(1/poly(n)); and
(4) a classical n-bit string b ∈ Zn2 . Suppose the eigenvalues and eigenvetors of H are {λk, |νk〉},
where λk = ei2πϕk for each k. The phase estimation sampling problem asks to output an estimation
of ϕk up to ε with probability at least (1− δ)|〈b|νk〉|2.

The local Hamiltonian eigenvalue sampling problem and the phase estimation sampling problem
are shown to be BQP-complete in Ref. [9].

3 QMA: Quantum NP

The quantum Merlin Arthur (QMA) complexity class is a quantum generalization of the NP.
Problems in QMA are considered difficult to solve even with a quantum computer.

Definition 8 (QMA). A language L = {Lyes, Lno} is in QMA(c, s) if there exists a polynomial
time quantum verifier V and a polynomial p(x) such that

• ∀x ∈ Lyes, there exists a quantum state |ψ〉 ∈ H⊗p(x)2 such that the probability that V accepts
the input (|x〉, |ψ〉) is greater than c, i.e.,

Pr{V (|x〉, |ψ〉) = 1} ≥ c;

• ∀x ∈ Lno, for all quantum states |ψ〉 ∈ H⊗p(x)2 , the probability that V accepts the input
(|x〉, |ψ〉) is less than s, i.e.,

Pr{V (|x〉, |ψ〉) = 1} ≤ s.

The class QMA is defined as QMA=QMA(2/3, 1/3).

A problem is said to be QMA-hard if every problem in QMA can be reduced to it, and a
problem is said to be QMA-complete if it is QMA-hard and is in QMA.

Exercise 9. Show that

QMA

(
2

3
,
1

3

)
= QMA

(
1

2
+

1

q(x)
,
1

2
− 1

q(x)

)
= QMA

(
1− 2−r(x), 2−r(x)

)
(5)

where q(x) and r(x) are polynomials in the input size x.
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3.1 k-local Hamiltonian problem

The k-local Hamiltonian problem is a natural generalization of k-SAT (Boolean satisfiability prob-
lem) to the quantum domain. To see this, consider the following formula on n variables {X1, · · · , Xn}.

Γ = C1 ∧ C2 ∧ · · · ∧ Cr, (6)

where each clause Ci is an OR over three variables (or their negations). Take for example n = 5,
and Ci = X2∨¬X3∨X5. Hence (X2, X3, X5) = (0, 1, 0) is the only unsatisfying assignment for the
clause Ci. We can now embed the problem to quantum domain by defining a projector Hi onto the
unsatisfying assignment of Ci, and in this case,

Hi = |00100〉〈00100|. (7)

In other words, for any satisfying assignment v = (v1, · · · , v5) ∈ Z5 of Ci, we have Hi|v〉 = 0, where
|v〉 = |v1〉 ⊗ · · · ⊗ |v5〉; while Hi|u〉 = +1|u〉 if |u〉 is the unsatisfying assignment. Equivalently, we
say that the matrix Hi penalizes the unsatisfying assignment by giving it one unit of energy. Finally
let H =

∑r
i=1Hi where each projector Hi corresponds to each clause Ci. We have H|z〉 = µ|z〉,

where µ is the number of unsatisfying assignments of the sequence z ∈ Zn to Γ in Eq. (6). Thus
the 3-SAT problem is equivalent to whether the smallest eigenvalue of H 0 or is it at least 1?

Definition 10 (k-local Hamiltonian). The operator H : L(H⊗n2 )→ L(H⊗n2 ) on n qubits is a k-local
Hamiltonian if H =

∑r
i=1Hi, where each term Hi is a Hermitian operator acting on at most k

qubits.

Given a k-local Hamiltonian on n qubits H =
∑r

i=1Hi with r = polyn and each ‖Hi‖ ≤ poly(n),
and let a < b be two constants, the k-local Hamiltonian problem is to decide

• YES instance: λmin(H) ≤ a;

• NO instance: λmin(H) > b.

Theorem 11 ([5]). The k-local Hamiltonian is QMA-complete for k ≥ 2.

4 Boson Sampling, IQP and NISQ

We are currently in the era of having noisy intermediate-scale quantum technologies (NISQ), i.e.,
the quantum devices with unavoidable noise could only perform specially designed tasks. One of the
fundamental questions is whether the NISQ devices could already outperform classical computations
in certain tasks. If the answer is no, it means that we must have fault-tolerant quantum computers
to see quantum advantages. If the answer is yes, what tasks are they?

In this section, we will explore two proposals; namely the Boson sampling problem [1] and
the instantaneous quantum circuits (IQP) [3], that are believed to have potential to answer the
aforementioned question.
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4.1 Boson Sampling

The Boson sampling problem considers sampling the output of a multimode linear optical circuit
of n modes that is injected with m indistinguishable single photons (n > m). Suppose that the
linear optical circuit is described by the n × n unitary U , which performs a linear transformation
of the creation operator a†i of the i-th input mode as follows:

b†j =
m∑
i=1

Uj,ia
†
i , (8)

where Uj,i is the (j, i)-th element of U and b†j is the creation operator of the j-th output mode.
Without loss of generality, we can consider the initial input state of m single photons in n modes
as follows:

|ψin〉 = |11, · · · , 1m, 0m+1, · · · , 0n〉, (9)

= a†1 · · · a
†
m|01, · · · , 0n〉. (10)

The output state after U is a superposition of different configurations of how the m photons could
have arrived in n modes:

|ψout〉 := U |ψin〉 =
∑
S

γS
∣∣tS1 , tS2 , · · · , tSN〉, (11)

where S is a configuration, tSi is the number of photons in the i-th output mode associated with
the S configuration, and γS is the amplitude. The number of configurations of m single photons in
n modes is

|S| =
(
n+m− 1

m

)
. (12)

The probability of measuring the configuration S is

p(S) = |γS |2 (13)

=
Perm (US)2

tS1 ! · · · tSN !
, (14)

where US is an m ×m sub-matrix of U and Perm(US) is the permanent of the matrix US . The
expression (14) was first noted in [7]. Hence the computation of γS in Eq. (13) is related to
computing the permanents of an m ×m matrix, which is known to be #P-complete. Moreover,
approximation to within multiplicative error of matrix permanents is also #P-hard. The concludes
that classical simulation of the Boson sampling is extremely hard.

Let us look at two examples that could help us better understand Eq. (14). Consider m = 2,
and the final configuration S = {2, 4}, where one photon at mode 2 and one photon at mode 4.
In this example, there are two ways that the photons can reach the desired configuration, namely,
(i) the first photon moves from mode 1 to mode 2 and the second photon moves from mode 2 to
mode 4; (ii) the first photon moves from mode 1 to mode 4 and the second photon stays at mode
2. Therefore,

γ{2,4} = U1,2U2,4 + U1,4U2,2 (15)

= perm(US) (16)
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where the 2× 2 sub-matrix US is

US =

(
U1,2 U2,2

U1,4 U2,4

)
.

The next example considers m = 3 and the final configuration S = {345}. Note that there are
3! = 6 different ways in which three photons can reach this configuration.

γ{3,4,5} = U1,3U2,4U3,5 + U1,3U2,5U3,4 + U1,4U2,3U3,5 (17)

+ U1,4U2,5U3,3 + U1,5U2,3U3,4 + U1,5U2,4U3,3 (18)

= perm(US) (19)

where the 3× 3 sub-matrix US is

US =

 U1,3 U2,3 U3,3

U1,4 U2,4 U3,4

U1,5 U2,5 U3,5

.
The boson sampling can be performed using

• Input: Vacuum and single photon states;

• Evolution: A passive linear interferometer;

• Measurement: An on-off photodetector;

which are very easy to implement. Note that these components alone are not universal.

4.2 Instantaneous Quantum Computation (IQP)

An IQP circuit on n qubits is the quantum circuit that only contains commuting quantum gates,
say in the X basis, while the initial state is |0〉⊗n.

It has been shown that the output distribution generated by uniform families of IQP circuit
cannot be classically simulated (otherwise it will violate certain complexity assumptions) [3]. The
class of IQP circuits is not universal, and can be easily implemented on the NISQ devices.
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